Probabilistic Neural Network with Complex Exponential Activation Functions in Image Recognition using Deep Learning Framework
نویسنده
چکیده
If the training dataset is not very large, image recognition is usually implemented with the transfer learning methods. In these methods the features are extracted using a deep convolutional neural network, which was preliminarily trained with an external very-large dataset. In this paper we consider the nonparametric classification of extracted feature vectors with the probabilistic neural network (PNN). The number of neurons at the pattern layer of the PNN is equal to the database size, which causes the low recognition performance and high memory space complexity of this network. We propose to overcome these drawbacks by replacing the exponential activation function in the Gaussian Parzen kernel to the complex exponential functions in the Fej\'er kernel. We demonstrate that in this case it is possible to implement the network with the number of neurons in the pattern layer proportional to the cubic root of the database size. Thus, the proposed modification of the PNN makes it possible to significantly decrease runtime and memory complexities without loosing its main advantages, namely, extremely fast training procedure and the convergence to the optimal Bayesian decision. An experimental study in visual object category classification and unconstrained face recognition with contemporary deep neural networks have shown, that our approach obtains very efficient and rather accurate decisions for the small training sample in comparison with the well-known classifiers.
منابع مشابه
Nonparametrically Learning Activation Functions in Deep Neural Nets
We provide a principled framework for nonparametrically learning activation functions in deep neural networks. Currently, state-of-the-art deep networks treat choice of activation function as a hyper-parameter before training. By allowing activation functions to be estimated as part of the training procedure, we expand the class of functions that each node in the network can learn. We also prov...
متن کاملبهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1708.02733 شماره
صفحات -
تاریخ انتشار 2017